- 1. Introduction
 - (a) Initial inspirations
 - i. Voyager by George E. Lewis
 - ii. PfQ model by Blackwell and Young
 - (b) Broad overview of my system
 - i. Receives input from one monophonic sound source, outputs monophonic sound
 - A. Input is human voice
 - B. Output is synthesized instrument modeled after human voice
 - ii. Based on PfQ
 - A. Each of the three components is developed in a different programming language
 - B. Components communicate through Open Sound Control (OSC) protocol
 - iii. Project is personal
 - A. Not developed with a particular theoretical model of creativity in mind
 - B. Not intended to research cutting edge A.I. techniques
 - C. Space to explore and refine my own programming practice and aesthetics
 - Similar systems are rarely developed with the intention to only be used by the designer themselves

2. 'P'

- (a) Outline of the role of 'P'
- (b) Previous attempts with different software
 - i. librosa and aubio
 - A. Both Python libraries
 - B. Not well maintained
 - ii. Marsyas
 - A. Actively developed for over a decade
 - B. Can be used through built-in scripting language or in C++
 - C. Inconsistent, sparse documentation
 - Mainly used by lab it's developed in
 - Research outside of their scope isn't well covered
- (c) Why Max?
 - i. Initial reservations
 - A. I wanted all parts of system to use conventional text-based languages
 - B. Max is proprietary
 - ii. I have used it before
 - iii. Stable and well-documented
 - iv. Well supported objects for MIR
 - v. Support for OSC
 - vi. Reservations answered
 - A. Decided text-based restriction was unnecessary
 - B. Max Runtime
 - Free version of Max
 - Can run Max files normally, but can't edit them
- 3. 'f'
 - (a) Outline of the role of 'f'
 - (b) Why Python?
 - i. Initial reservations

- A. It's not a particularly fast language
 - Speed is ideal with real-time audio
- ii. Language I know the best
- iii. Reservations answered
 - A. Speed hasn't affected me
 - Python isn't directly working with audio
 - 2010's hardware is much more robust than early systems' hardware
- 2. 'Q'
 - (a) Outline of the role of 'Q'
 - (b) Initially planned on abstract synthesis
 - (c) Switch to vocal synthesis
 - i. Reasons
 - A. Narrowed my options; therefore easier to focus
 - B. Interesting pairing my "real" voice with "fake" voice
 - ii. FOF synthesis
 - A. Various ways to analyze and synthesize sung speech
 - List a few
 - B. FOF: explanation
 - C. FOF is well known and comparably simple conceptually
 - D. Sound isn't as strong as other techniques, but synthesis isn't focus of this project
 - (d) Why Csound?
 - i. Csound is the only option that already includes FOF synthesis
 - A. Max: only available as outdated (unusable) third party objects
 - ii. Opportunity to learn new language
 - iii. Syntax is relatively simple, if unconventional
- 3. Unifying the three components
 - (a) API
 - i. Built on top of OSC
 - ii. Simple information for each note
 - A. Originally more complex information retrieved in 'P' and passed to 'f'
 - Phrase density
 - B. Moved that retrieval process to 'f'
 - iii. Originally built for communication between 'P' and 'f'; reused for 'f' and 'Q'
 - (b) Editing each component to better communicate with others
- 4. Refinement
 - (a) Through performance practice
 - (b) Adding features