I created a library function to implement the sieve of eratosthenes and solve a couple prime problems. Here's my implementation:
def sieve(num):
i = 2
array = list(range(num))
while i < math.sqrt(num): #to get all primes under a number only have to check the sqaure root of that number
temp = i #temp to hold starting value of i
while i < num - 1:
i = i + temp
if i < num - 1: # check if added total is higher than array bounds
array[i] = 0 # marks all non-primes as 0
i = temp
i += 1
# sets i to the next non-marked number
while True:
if array[i] != 0:
i = array[i]
break
else:
i += 1
answer = filter(lambda x: x != 0, array)
return list(answer)
I used it to solve euler problem 3 like this:
from library.sieve import sieve
import math
def euler_3(num):
'''takes a number as an argument and solves for the greatest prime factor
of that number'''
answer = []
primes = sieve(1000000)
for i in range(len(primes)):
if num % primes[i] == 0:
answer.append(primes[i]) # create an array of prime factors
return answer[-1] # return the greatest prime factor
print(euler_3(600851475143))
and euler 7 like this:
from library.sieve import sieve
#find the 100001'st prime
all_primes = sieve(1000000)
print(all_primes[10001])
Definitely makes life easier.
last modified | size | ||
euler_3.py | Wed Jan 15 2025 08:36 am | 539B | |
euler_7.py | Wed Jan 15 2025 08:36 am | 195B | |
sieve.py | Wed Jan 15 2025 08:36 am | 1.5K | |
sieve_jims_office.py | Wed Jan 15 2025 08:36 am | 923B | |
sieve_test.py | Wed Jan 15 2025 08:36 am | 204B |