Modern
Physics

Spring 2018
course
site

April 2

Go over chapter 6 homework.

Start chapter 7.

The text does not do a good job of explaining where the solution to the 3D Schrodinger comes from. I've added a section to the references with links to more complete explanations - please check those out.

energy in rotating coords

$$ E = \frac{1}{2} m ({v_x}^2 + {v_y}^2) - C/r \\ \, = \frac{1}{2} m ({v_r}^2 + {v_\theta}^2) - C/r \\ $$

where \( v_\theta \) is the velocity around the origin and C/r is some central potential.

Since the angular momentum is \( L = r (m v_\theta) \) and is unchanging, we can also write this as

$$ E = \frac{1}{2} m ({v_r}^2 + \frac{L^2}{m^2 r^2}) - C/r \\ \, = \frac{1}{2} m {v_r}^2 + \frac{L^2}{2 m r^2} - C/r $$

Those last two terms can be thought of as an "effective potential" for radial motion in a rotating coordinate system.

Compare this with the radial part of the 3d schrodinger equation.

https://cs.marlboro.college /cours /spring2018 /modern_physics /notes /apr2
last modified Sun December 22 2024 11:09 am